On the cut polyhedron

نویسندگان

  • Michele Conforti
  • Giovanni Rinaldi
  • Laurence A. Wolsey
چکیده

The cut polyhedron cut(G) of an undirected graph G = (V,E) is the dominant of the convex hull of all its nonempty edge cutsets. After examining various compact extended formulations for cut(G), we study some of its polyhedral properties. In particular, we characterize all the facets induced by inequalities with right-hand side at most 2. These include all the rank facets of the polyhedron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse feasible problem

In many infeasible linear programs it is important to construct it to a feasible problem with a minimum pa-rameters changing corresponding to a given nonnegative vector. This paper defines a new inverse problem, called “inverse feasible problem”. For a given infeasible polyhedron and an n-vector a minimum perturba-tion on the parameters can be applied and then a feasible polyhedron is concluded.

متن کامل

On the dominant of the s-t-cut polytope

The natural linear programming formulation of the maximum s-t-flow problem in path variables has a dual linear program whose underlying polyhedron is the dominant P↑ s-t-cut of the s-t-cut polytope. We present a complete characterization of P↑ s-t-cut with respect to vertices, facets, and adjacency.

متن کامل

On the dominant of the s-t-cut polytope: Vertices, facets, and adjacency

The natural linear programming formulation of the maximum s-t-flow problem in path variables has a dual linear program whose underlying polyhedron is the dominant P↑ s-t-cut of the s-t-cut polytope. We present a complete characterization of P↑ s-t-cut with respect to vertices, facets, and adjacency.

متن کامل

Every Nontrivial Facet-Defining Inequality for the Corner Polyhedron is an Intersection Cut

Intersection cuts were introduced by Balas and the corner polyhedron by Gomory. It is a classical result that intersection cuts are valid for the corner polyhedron. In this paper we show that, conversely every nontrivial facet-defining inequality for the corner polyhedron is an intersection cut.

متن کامل

Equivalence between intersection cuts and the corner polyhedron

Intersection cuts were introduced by Balas and the corner polyhedron by Gomory. Balas showed that intersection cuts are valid for the corner polyhedron. In this paper we show that, conversely, every nontrivial facet-defining inequality for the corner polyhedron is an intersection cut.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 277  شماره 

صفحات  -

تاریخ انتشار 2004